
TOKDRIFT: When LLM Speaks in Subwords
but Code Speaks in Grammar

Yinxi Li, Yuntian Deng, Pengyu Nie
University of Waterloo

{yinxi.li, yuntian, pynie}@uwaterloo.ca

Abstract

Large language models (LLMs) for code rely
on subword tokenizers, such as byte-pair en-
coding (BPE), learned from mixed natural lan-
guage text and programming language code but
driven by statistics rather than grammar. As a
result, semantically identical code snippets can
be tokenized differently depending on super-
ficial factors such as whitespace or identifier
naming. To measure the impact of this mis-
alignment, we introduce TOKDRIFT, a frame-
work that applies semantic-preserving rewrite
rules to create code variants differing only in
tokenization. Across nine code LLMs, includ-
ing large ones with over 30B parameters, even
minor formatting changes can cause substantial
shifts in model behavior. Layer-wise analysis
shows that the issue originates in early embed-
dings, where subword segmentation fails to cap-
ture grammar token boundaries. Our findings
identify misaligned tokenization as a hidden ob-
stacle to reliable code understanding and gener-
ation, highlighting the need for grammar-aware
tokenization for future code LLMs.

1 Introduction

Large language models (LLMs) have become pow-
erful tools for programming tasks (Chen et al.,
2021; Nye et al., 2021; Yang et al., 2024; Guo et al.,
2024; Meta FAIR CodeGen Team, 2025). Before
any modeling occurs, code is first tokenized into
discrete units using a pretrained subword tokenizer
such as byte-pair encoding (BPE) (Sennrich et al.,
2016). However, the tokens that LLMs see, which
are based on subword frequencies, are often very
different from the tokens defined by programming
language (PL) grammar. Whereas PLs have clear
syntactic boundaries (e.g., keywords, identifiers,
operators), subword tokenizers merge character se-
quences statistically, sometimes splitting identifiers
at arbitrary points or combining unrelated symbols
into a single token. This misalignment between

(a) Workflow of TOKDRIFT, our framework for quantifying
LLM sensitivity to semantic-preserving code rewrite rules.

(b) Example of tokenization misalignment. Adding a space
between dot (“.”) and “factorial” causes a significant
change in token sequences, from [“.factor”, “ial”] to [“.”,
“␣factorial”]. Consequently, the LLM’s code translation
prediction shifts from incorrect (naming the factorial function
as “comb” and later referring to it as “combin”) to correct.

Figure 1: TOKDRIFT workflow and example.

subwords and syntax means that LLMs do not al-
ways process code in the units that programmers or
compilers would expect.

As an example, the presence of a space before
an identifier can lead to completely different token
sequences, and thus different predictions, despite
identical program semantics (Figure 1). While such
differences may appear superficial, they raise a
deeper concern about how robustly code LLMs
represent grammar and meaning. If tokenization
determines how code is segmented and embedded,
even small discrepancies could propagate through
the model and alter its predictions. This motivates
the central question of our study:

Does the misalignment between subword tok-
enization and PL grammar limit LLMs’ abil-
ity to understand and generate code?

1

ar
X

iv
:2

51
0.

14
97

2v
1

 [
cs

.C
L

]
 1

6
O

ct
 2

02
5

https://arxiv.org/abs/2510.14972v1

To study this question, we introduce TOKDRIFT,
a framework that applies semantic-preserving
rewrite rules, such as changing whitespace or iden-
tifier casing style, to create pairs of programs
that are semantically equivalent but tokenized dif-
ferently. We evaluate nine code LLMs across
three representative programming tasks—bug fix-
ing, code summarization, and code translation—
and measure whether model outputs remain func-
tionally equivalent when tokenization changes.

Our experiments show that even minor tokeniza-
tion variations can substantially impact model be-
havior. For example, the most performant LLM
in our experiment, Qwen2.5-Coder-32B-Instruct,
changes its prediction 6.09% of the times when the
input tokenization changes (and up to 60% under
a single rewrite rule). Layer-wise analysis further
indicates that the effect originates in early layers,
where subword segmentation fails to align with
grammatical token boundaries. Together, these
findings suggest that tokenizer design remains a
critical yet under-explored factor in developing ro-
bust and grammar-aware code LLMs.
The main contributions of this work include:

• We identify and formalize the misaligned tok-
enization problem in code LLMs.

• We introduce TOKDRIFT, a framework for quan-
tifying model sensitivity to semantic-preserving
code rewrites that alter tokenization.

• We conduct a large-scale empirical study show-
ing that misaligned tokenization affects all evalu-
ated models and persists with scaling.

• We open-source our framework and data to fa-
cilitate future research on grammar-aware and
domain-adaptive tokenization.

Our code and data are available at:
https://github.com/uw-swag/tokdrift

2 Background

2.1 LLM Tokenization
Tokenization is the first step in processing input
for LLMs, converting raw text into a sequence of
discrete tokens. Each token corresponds to a model
time step and has a dedicated embedding. Mod-
ern LLMs use learned tokenization strategies that
eliminate the out-of-vocabulary problem by start-
ing from minimal units, such as characters or bytes,
and learning how to merge them into longer frag-
ments based on frequency in a large corpus. Popu-
lar approaches like BPE (Sennrich et al., 2016) and

Figure 2: Heatmap of (code) LLMs’ vocabulary dis-
tances (Amba Hombaiah et al., 2021).

WordPiece (Schuster and Nakajima, 2012; Devlin
et al., 2019) follow this general principle, differ-
ing mainly in their merge heuristics. Often, pre-
tokenization steps like splitting at whitespace are
applied before learning to prevent tokens from span-
ning across word boundaries.

The tokenizers used by different LLMs can vary
significantly due to differences in pre-tokenization
rules, token learning algorithms, and pretraining
corpora. As shown in Figure 2, even models from
the same family often share less than half of their
vocabulary, such as Llama 3 vs. Llama 4. The main
exception occurs when model developers intention-
ally reuse the same tokenizer across variants, such
as Qwen2.5 and Qwen2.5-Coder, which share an
identical vocabulary and tokenizer configuration.

2.2 PL Tokenization

Tokenization in PLs, often called lexing, is the first
step of code parsing: it transforms a stream of
characters into a sequence of tokens according to
a PL’s grammar. These tokens are then passed to
a parser, which constructs an abstract syntax tree
(AST) to represent the program’s structure.

While exact rules vary by language, most PLs
share a common set of token types, including: iden-
tifiers (e.g., variable or function names), operators
(e.g., +, *), keywords (e.g., if, return), literals
(e.g., numeric or string constants), and whitespace,
which is typically used to separate tokens but is
otherwise ignored.

Unlike LLM tokenization, PL tokenization in
compilers and interpreters is deterministic. For
example, the snippet x+1 is always tokenized into
three tokens: an identifier (x), an operator (+), and
a literal (1). Formatting changes, such as adding
spaces, do not affect the token sequence as long as
the code remains syntactically valid.

2

https://github.com/uw-swag/tokdrift

Table 1: Benchmarks in our experiments. We manually examine the benchmarks to follow the naming conventions,
and to fix/exclude invalid tests and samples, see details in Section C.1.

Benchmark Source Task Input PL Output PL # Samples

HumanEval-Fix-py
HumanEvalPack

(Muennighoff et al., 2023)

bug fixing
Python Python 164

HumanEval-Fix-java Java Java 164
HumanEval-Explain-py

code summarization
Python Python 164

HumanEval-Explain-java Java Java 164
Avatar-py2java Avatar

(Ahmad et al., 2023; Pan et al., 2024)
code translation

Python Java 244
Avatar-java2py Java Python 246
CodeNet-py2java CodeNet

(Puri et al., 2021; Pan et al., 2024)
Python Java 200

CodeNet-java2py Java Python 200

This behavior misaligns with LLM tokenizers:
while PL tokenizers produce stable, grammar-
aware units, LLM tokenizers frequently break code
structure, resulting in inconsistent or fragmented
representations of semantically identical programs.
In this work, we refer to grammar-aware tokens as
PL tokens, and contrast them with the LLM tokens
produced by learned subword tokenizers.

3 TOKDRIFT Framework

Figure 1a illustrates the overall workflow of TOK-
DRIFT, our framework for quantifying model sen-
sitivity to semantic-preserving code rewrites that
alter tokenization. In a nutshell, TOKDRIFT sys-
tematically compares the LLM outputs given the
baseline input tokens and variant input tokens (af-
ter applying rewrite rules) through a large set of
experiments. Each experiment is performed on a
specific benchmark, and tests the sensitivity of a
given LLM against a specific rewrite rule.

3.1 Benchmarks

We searched for recent popular coding LLM bench-
marks where: (1) the input includes a code snippet,
since rewrite rules cannot be applied on natural
language; (2) the output is evaluated with an auto-
mated functional correctness metric.We focused on
two popular PLs, Java and Python.

Based on these criteria, we selected eight bench-
marks covering three tasks, listed in Table 1. Bug
fixing (Tufano et al., 2019) transforms a buggy
code snippet into a correct one. Code summariza-
tion (Hu et al., 2018; Panthaplackel et al., 2020)
aims at summarizing a code snippet into natural
language description; following HumanEvalPack’s
setup (Muennighoff et al., 2023), the description is
fed back to LLM to generate code for measuring
correctness. Code translation (Ahmad et al., 2023;
Puri et al., 2021) is the task of translating a code
snippet from one PL to another. All benchmarks
use tests to evaluate the correctness of outputs.

Table 2: Models used in our experiments.

Series S M L

Llama-3 3B 8B 70B
Qwen2.5-Coder 1.5B 7B 32B
DeepSeek-Coder 1.3B 6.7B 33B

3.2 Models

Table 2 lists the models used in TOKDRIFT. We
selected three series of popular open-source LLMs
(using the coding-specific variants if available),
namely Llama-3, Qwen2.5-Coder, and DeepSeek-
Coder. To cover the model size spectrum, we used
small (∼1B parameters), medium (∼7B), and large
(>30B) variants in each series. All models are
instruction-tuned. We perform greedy decoding to
generate deterministic outputs (see experimental
environment details in Section C.4).

3.3 Rewrite Rules

Table 3 lists the rewrite rules used in TOKDRIFT.
Each rewrite rule converts all occurrences of the
left-hand side substring to the right-hand side sub-
string. According to the grammars of the two
PLs we experiment on (and generally for most
modern PLs), these rewrite rules are semantically-
preserving by design. We apply one rewrite rule at
a time to investigate their impact in isolation.

The six rewrite rules starting with “N” are in-
spired by naming conventions. Identifiers usually
follow one of the four casing styles: camelCase
(for variables/functions in Java), PascalCase (for
classes in Java/Python), snake_case (for vari-
ables/functions in Python), and SCREAMING_CASE
(for constants in Java/Python). Since variables/-
functions are most common among identifiers,
we design rewrite rules to alter their casing style.
Specifically, N1, N2, N3 convert camelCase iden-
tifiers in Java to the other three casing styles, while
N4, N5, N6 convert snake_case identifiers in
Python. These rewrite rules challenge LLMs’ ro-
bustness to different naming styles.

3

Table 3: Rewrite rules supported by TOKDRIFT, inspired by naming conventions (starting with N) and spacing
conventions (starting with S). Each rewrite rule may apply to Java (marked by J), Python (marked by P), or both.

No. PL Rewrite Rule Description Example

N1 J camelCase→snake_case

Convert identifiers from the most common
casing style in the input PL to alternative ones

␣sorted L st→ ␣sorted _lst

N2 J camelCase→PascalCase ␣cloestPair→ ␣Close st Pair

N3 J camelCase→SCREAMING_CASE ␣possible S olutions→ ␣POSS IBLE _S OLUTION S

N4 P snake_case→camelCase ␣input _clip board→ ␣input Clipboard

N5 P snake_case→PascalCase ␣string _xor→ ␣String X or

N6 P snake_case→SCREAMING_CASE ␣triangle _area→ ␣TRI ANGLE _AREA

S1 P OP -→OP ␣ - Add space between operator and minus sign [::- 1]→ [:: ␣- 1]

S2 P OP [→OP ␣ [Add space between operator and left square bracket)))[2 :]\n→))) ␣[2 :]\n

S3 J) .→) ␣ . Add space between right parentheses and period ␣'. '). replace→ ␣'.') ␣. replace

S4 P])→] ␣) Add space between right square bracket and right parentheses :]):\n→ :] ␣):\n

S5 P OP]→OP ␣] Add space between operator and right square bracket = ␣[[]→ = ␣[[␣]

S6 J OP (→OP ␣ (Add space between operator and left parentheses ((! is True→ (␣(! is True

S7 P [ID→[␣ ID Add space between left square bracket and identifier ([v ow els→ ([␣vowels

S8 J ++)→++ ␣) Add space between increment operator and right parentheses ␣i ++)→ ␣i ++ ␣)

S9 J . *→. ␣ * Add space between period and asterisk .*;\n→ . ␣* ;\n

S10 P) :→) ␣ : Add space between right parentheses and colon ␣main ():\n→ ␣main () ␣:\n

S11 J) ;→) ␣ ; Add space between right parentheses and semicolon <>();\n→ < >() ␣;\n

S12 J OP ;→OP ␣ ; Add space between operator and semicolon Ac ++;→ Ac ++ ␣;

S13 J P))→) ␣) Add space between two right parentheses .toCharArray ())→ .toCharArray () ␣)

S14 J P ()→(␣) Add space between two left parentheses alpha ()→ alpha (␣)

S15 J P . ID→. ␣ ID Add space between period and identifier .factor ial→ . ␣factorial

S16 J P (ID→(␣ ID Add space between left parentheses and identifier (String→ (␣String

S17 J P OP ID→OP ␣ ID Add space between operator and identifier :i +len (sub string→ : ␣i + ␣len (␣substring

S18 J P OP ALL→OP ␣ ALL Add space between operator and identifier/operator (l : ␣list):\n→ (␣l : ␣list) ␣:\n

The eighteen rewrite rules starting with “S”
are inspired by spacing conventions. Whitespace
around most operators usually carries no seman-
tic meaning and is optional. Thus, the spacing-
related rewrite rules identifies two consecutive to-
kens (one of them is an operator) and inserts a space
in between. Specifically, we look for combinations
where one of them is a specific operator or any kind
of operator (represented by OP), and the other one
is another specific operator or an identifier (repre-
sented by ID). Exploring all combinations would
be infeasible, thus we select the top-10 frequently
appearing combinations in the benchmarks for each
PL. In addition, we add S17 and S18 as “wildcard”
rules to cover all cases where an OP is followed
by an ID or ID/OP for both PLs. These rewrite
rules challenge LLM and its tokenizer’s robustness
to different formatting styles. Notably, in most
LLMs with a pre-tokenization step of splitting be-
fore whitespace, these rewrite rules will lead to
more LLM tokens.

3.4 Metrics
Recall that each experiment on a given {benchmark,
model, rewrite rule} triplet compares the baseline
outputs (given the original inputs) and the variant
outputs (given the inputs after applying rewrite
rule). The benchmark provides a set of tests to

evaluate whether each output is correct or incorrect.
We define accuracy as the percentage of correct
outputs, and ∆accuracy as the variant’s accuracy
minus the baseline’s accuracy.

The ∆accuracy metric, although intuitive, has
two limitations: (1) accuracy improvements and
degradations on individual samples cancel out;
(2) some samples may not be affected by a rewrite
rule if the left-hand side substring does not appear
in the input; the outputs of those samples will never
change. To address these, we introduce an unbiased
metric called sensitivity, defined as the percentage
of the samples whose output correctness flips (from
correct to incorrect or vice versa) out of the sam-
ples whose input is changed by the rewrite rule. A
lower sensitivity indicates that the model is more
robust against the token changes introduced by a
rewrite rule; when averaged across all rewrite rules,
it reflects how sensitive the model is to the LLM-PL
tokenization misalignment.

4 Evaluation

4.1 Results

Table 4 shows the accuracy and ∆accuracy of each
model on each rewrite rule. We can observe that
most rewrite rules cause measurable changes in
model accuracy, ranging from -2.90 to +0.32 abso-

4

Table 4: Accuracy and ∆accuracy (in parenthesis) of each model on each rewrite rule.

Variant Llama-3B Llama-8B Llama-70B Qwen-1.5B Qwen-7B Qwen-32B DS-1.3B DS-6.7B DS-33B Average

Input PL = Java

baseline 32.04 43.15 57.24 33.59 57.36 70.41 38.50 58.01 57.36 49.74
N1 32.69 (+0.65) 43.54 (+0.39) 57.49 (+0.25) 35.27 (+1.68) 57.62 (+0.26) 70.28 (-0.13) 37.98 (-0.52) 57.36 (-0.65) 57.11 (-0.25) 49.93 (+0.19)

N2 32.17 (+0.13) 43.54 (+0.39) 56.85 (-0.39) 35.27 (+1.68) 57.75 (+0.39) 70.41 (+0.00) 39.02 (+0.52) 58.14 (+0.13) 57.36 (+0.00) 50.06 (+0.32)

N3 32.56 (+0.52) 44.19 (+1.04) 56.20 (-1.04) 35.53 (+1.94) 58.01 (+0.65) 69.12 (-1.29) 38.37 (-0.13) 56.33 (-1.68) 56.46 (-0.90) 49.64 (-0.10)

S3 31.65 (-0.39) 43.02 (-0.13) 56.20 (-1.04) 34.37 (+0.78) 56.72 (-0.64) 70.41 (+0.00) 37.34 (-1.16) 58.66 (+0.65) 57.88 (+0.52) 49.58 (-0.16)

S6 31.52 (-0.52) 43.02 (-0.13) 57.62 (+0.38) 33.20 (-0.39) 57.49 (+0.13) 70.28 (-0.13) 37.98 (-0.52) 58.53 (+0.52) 57.49 (+0.13) 49.68 (-0.06)

S8 31.91 (-0.13) 43.28 (+0.13) 57.24 (+0.00) 34.11 (+0.52) 56.72 (-0.64) 71.45 (+1.04) 38.63 (+0.13) 57.49 (-0.52) 58.27 (+0.91) 49.90 (+0.16)

S9 32.30 (+0.26) 40.96 (-2.19) 58.66 (+1.42) 33.46 (-0.13) 58.14 (+0.78) 69.51 (-0.90) 36.95 (-1.55) 56.59 (-1.42) 57.75 (+0.39) 49.37 (-0.37)

S11 32.69 (+0.65) 44.57 (+1.42) 55.17 (-2.07) 35.14 (+1.55) 56.33 (-1.03) 71.58 (+1.17) 37.34 (-1.16) 57.11 (-0.90) 57.11 (-0.25) 49.67 (-0.07)

S12 30.49 (-1.55) 43.02 (-0.13) 56.07 (-1.17) 34.75 (+1.16) 55.81 (-1.55) 67.05 (-3.36) 38.63 (+0.13) 55.94 (-2.07) 58.53 (+1.17) 48.92 (-0.82)

S13 32.43 (+0.39) 42.64 (-0.51) 56.59 (-0.65) 33.46 (-0.13) 57.36 (+0.00) 69.77 (-0.64) 37.47 (-1.03) 58.27 (+0.26) 56.98 (-0.38) 49.44 (-0.30)

S14 29.84 (-2.20) 41.09 (-2.06) 54.13 (-3.11) 32.17 (-1.42) 56.85 (-0.51) 71.19 (+0.78) 37.86 (-0.64) 57.11 (-0.90) 57.62 (+0.26) 48.65 (-1.09)

S15 30.62 (-1.42) 36.82 (-6.33) 57.24 (+0.00) 33.46 (-0.13) 56.72 (-0.64) 70.28 (-0.13) 37.34 (-1.16) 55.43 (-2.58) 59.43 (+2.07) 48.59 (-1.15)

S16 30.88 (-1.16) 40.83 (-2.32) 55.94 (-1.30) 34.88 (+1.29) 57.36 (+0.00) 71.96 (+1.55) 36.43 (-2.07) 57.49 (-0.52) 58.66 (+1.30) 49.38 (-0.36)

S17 28.68 (-3.36) 37.34 (-5.81) 56.07 (-1.17) 35.66 (+2.07) 55.43 (-1.93) 70.03 (-0.38) 35.40 (-3.10) 55.04 (-2.97) 58.91 (+1.55) 48.06 (-1.68)

S18 25.97 (-6.07) 34.88 (-8.27) 56.85 (-0.39) 34.11 (+0.52) 56.07 (-1.29) 70.28 (-0.13) 33.98 (-4.52) 53.10 (-4.91) 56.33 (-1.03) 46.84 (-2.90)

Input PL = Python

baseline 39.12 49.87 69.04 40.67 64.51 76.17 44.82 61.92 68.13 57.14
N4 40.03 (+0.91) 51.04 (+1.17) 68.91 (-0.13) 39.77 (-0.90) 65.03 (+0.52) 77.85 (+1.68) 44.30 (-0.52) 61.53 (-0.39) 68.39 (+0.26) 57.43 (+0.29)

N5 37.56 (-1.56) 50.91 (+1.04) 68.65 (-0.39) 39.25 (-1.42) 64.77 (+0.26) 77.72 (+1.55) 42.88 (-1.94) 61.53 (-0.39) 68.39 (+0.26) 56.85 (-0.29)

N6 38.08 (-1.04) 50.65 (+0.78) 66.19 (-2.85) 39.38 (-1.29) 64.51 (+0.00) 76.81 (+0.64) 42.23 (-2.59) 61.14 (-0.78) 67.62 (-0.51) 56.29 (-0.85)

S1 39.38 (+0.26) 50.39 (+0.52) 68.65 (-0.39) 40.54 (-0.13) 64.51 (+0.00) 76.68 (+0.51) 44.69 (-0.13) 62.56 (+0.64) 67.62 (-0.51) 57.22 (+0.08)

S2 39.64 (+0.52) 50.65 (+0.78) 68.78 (-0.26) 40.41 (-0.26) 64.77 (+0.26) 75.91 (-0.26) 43.65 (-1.17) 62.44 (+0.52) 67.75 (-0.38) 57.11 (-0.03)

S4 39.77 (+0.65) 50.65 (+0.78) 69.30 (+0.26) 40.54 (-0.13) 64.51 (+0.00) 73.19 (-2.98) 44.82 (+0.00) 61.92 (+0.00) 67.36 (-0.77) 56.90 (-0.24)

S5 38.60 (-0.52) 50.78 (+0.91) 68.91 (-0.13) 40.80 (+0.13) 64.12 (-0.39) 76.94 (+0.77) 44.43 (-0.39) 62.69 (+0.77) 66.71 (-1.42) 57.11 (-0.03)

S7 40.03 (+0.91) 49.35 (-0.52) 68.26 (-0.78) 40.67 (+0.00) 63.34 (-1.17) 76.42 (+0.25) 44.30 (-0.52) 62.69 (+0.77) 67.23 (-0.90) 56.92 (-0.22)

S10 38.47 (-0.65) 50.65 (+0.78) 69.17 (+0.13) 40.67 (+0.00) 63.99 (-0.52) 77.46 (+1.29) 44.56 (-0.26) 62.05 (+0.13) 67.10 (-1.03) 57.12 (-0.02)

S13 37.95 (-1.17) 50.13 (+0.26) 69.30 (+0.26) 40.54 (-0.13) 64.90 (+0.39) 76.55 (+0.38) 44.30 (-0.52) 62.05 (+0.13) 67.10 (-1.03) 56.98 (-0.16)

S14 38.73 (-0.39) 49.22 (-0.65) 68.39 (-0.65) 39.38 (-1.29) 63.73 (-0.78) 74.09 (-2.08) 45.08 (+0.26) 61.66 (-0.26) 67.49 (-0.64) 56.42 (-0.72)

S15 39.12 (+0.00) 50.26 (+0.39) 67.49 (-1.55) 39.77 (-0.90) 62.69 (-1.82) 76.30 (+0.13) 44.17 (-0.65) 61.66 (-0.26) 67.23 (-0.90) 56.52 (-0.62)

S16 40.16 (+1.04) 49.87 (+0.00) 69.04 (+0.00) 39.64 (-1.03) 63.08 (-1.43) 76.68 (+0.51) 43.65 (-1.17) 61.27 (-0.65) 67.23 (-0.90) 56.74 (-0.40)

S17 40.41 (+1.29) 50.39 (+0.52) 67.62 (-1.42) 39.38 (-1.29) 61.92 (-2.59) 76.55 (+0.38) 42.62 (-2.20) 60.49 (-1.43) 66.32 (-1.81) 56.19 (-0.95)

S18 37.44 (-1.68) 49.87 (+0.00) 67.62 (-1.42) 38.34 (-2.33) 63.08 (-1.43) 75.13 (-1.04) 42.49 (-2.33) 62.05 (+0.13) 67.36 (-0.77) 55.93 (-1.21)

Background color: baseline in grey, variants better than baseline in green, and variants worse than baseline in red.
The best variant is highlighted in bold and the worst variant is underlined.

lute percentage points if averaging across all mod-
els. The largest ∆accuracy of -8.27% happens
on Llama-8B for Java benchmarks, whose accu-
racy drops from 43.15% to 34.88% when applying
rewrite rule S18 (adding space after each opera-
tor). Considering advances in LLM performance
are sometimes claimed with around 1 percentage
point margin, these accuracy deltas caused by sim-
ple rewrite rules are non-negligible.

The impact of misaligned tokenization is more
apparent in the sensitivity metric, as shown in the
distribution plots in Figure 3. The average sensi-
tivity is 9.26% for naming rewrites and 8.29% for
spacing rewrites. Among the naming rewrites (Fig-
ure 3a), LLMs are relatively less sensitive to trans-
ductions between camelCase and snake_case
(N1 and N4), likely because camelCase and
SCREAMING_CASE are less frequent. This finding
implies that the casing styles of identifiers, while
technically convey no semantic meaning in PLs,
are an important factor in LLMs’ understanding of
code. In Figure 3b, we can see that LLMs’ aver-

age sensitivity is over 10% for the two “wildcard”
spacing rewrite rules (S17 and S18). Other spac-
ing rewrite rules result in varying levels of sensi-
tivity, among which the most impactful ones are
S15 (adding space between period and identifier),
S14 (adding space between a pair of parentheses),
and S12 (adding space between operator and semi-
colon). In terms of the average sensitivity of mod-
els (Figure 3c), we observe that Llama-3 models
are more sensitive than the other two series, but
all models persist a non-negligible sensitivity of at
least 5.71% (Qwen-32B on spacing rewrite rules).

4.2 Impact of Model Size

We investigate whether larger models are less sen-
sitive to tokenization changes, with the general
assumption of larger models being more robust. Ta-
ble 5 shows the the average sensitivity of models
at different sizes, where the small, medium, and
large models in each series are compared on a row.
While the small and medium models are at around
the same level of sensitivity, the large models are

5

(a) grouped by naming rewrite rule

(b) grouped by spacing rewrite rule

(c) grouped by model

Figure 3: Violin plots of sensitivity distributions.

usually less sensitive (i.e., more robust) than their
smaller counterparts, with only one exception of
Qwen-32B on naming rewrite rules.

We also perform statistically significant tests via
Wilcoxon signed-rank test (Conover, 1999). The
results show that the differences are not significant
for naming rules, but significant for spacing rules
(except between the small and medium models for
Qwen2.5-Coder and DeepSeek-Coder series).

4.3 Impact of Identifier Fragment Changes

We noticed that identifiers are frequently tokenized
into different subwords before and after applying
rewrite rules. For example, Llama-3 tokenizes
‘␣sortedLst’ into three tokens [‘␣sorted’, ‘L’,
‘st’], and applying N1 changes it into two tokens
[‘␣sorted’, ‘_lst’]. We define this case as iden-
tifier fragment change: the list of fragments (tokens
but ignoring spaces and underscores) changes be-

Table 5: Impact of model size on sensitivity.

Rewrite Rule Model Series S M L

Naming
Llama-3 11.48 10.68 9.43
Qwen2.5-Coder 7.73 7.95 8.27
DeepSeek-Coder 9.88 8.95 8.95

Spacing
Llama-3 10.22 10.99 8.51
Qwen2.5-Coder 7.07 8.87 5.71
DeepSeek-Coder 8.36 8.71 6.26

Table 6: Impact of identifier fragment changes on sensi-
tivity. “Unchanged” samples do not have any identifier
fragment change, and “Changed” samples have at least
one identifier fragment change.

Rewrite Rule Model Unchanged Changed

Naming
Llama-70B 8.13 11.21
Qwen-32B 6.58 10.57
DS-33B 6.61 10.82

Spacing
Llama-70B 7.24 11.89
Qwen-32B 5.09 7.37
DS-33B 5.80 7.12

fore and after applying rewrite rules. Using this
concept, we can categorize the samples into two
groups, one without any identifier fragment change
(i.e., “Unchanged”), and the other with at least one
identifier fragment change (i.e., “Changed”).

Table 6 shows the average sensitivity of models
on the two groups of samples; note that we focus on
the large model in each series in this analysis. The
identifier fragment changed group shows consis-
tently higher sensitivity than the unchanged group,
with the largest difference on for naming rewrite
rules (10.82% vs. 6.61%). This finding suggests
that how identifiers are tokenized into subwords
play an important role in LLMs’ understanding
of code. Arguably, identifiers are frequently not
tokenized into semantically meaningful subwords
(such as the ‘␣sortedLst’ example), which may
fundamentally limit the model’s code comprehen-
sion and generation capabilities.

5 Root Cause Analyses

In addition to quantifying its impact, we also study
why LLMs are sensitive to tokenization changes,
along two aspects: (1) word frequency in the pre-
training corpus (Section 5.1); (2) LLM’s hidden
states before and after the rewrite rule (Section 5.2).

5.1 Word Frequency Analysis
Our hypothesis is that there is a correlation between
sensitivity and the word frequencies of the rewrite
rule’s left-hand side and right-hand side. If the
ratio of right-hand side to left-hand side word fre-

6

Table 7: Word frequency of rewrite rules’ left-hand side
(LHS) and right-hand side (RHS) on GitHub. Ratio is
the percentage of RHS to LHS word frequency.

Rewrite Rule LHS RHS Ratio [%]

Java

S3:) .→) ␣ . 78.9M 45.7K 0.06
S8: ++)→++ ␣) 22.9M 664K 2.90
S9: . *→. ␣ * 34.2M 7.3M 21.35
S11:) ;→) ␣ ; 161M 924K 0.57
S13:))→) ␣) 102M 3.4M 3.33
S14: ()→(␣) 144M 195K 0.14
S15: . ID→. ␣ ID 175M 45.9M 16.22
S16: (ID→(␣ ID 172M 6.6M 3.84

Python

S4:])→] ␣) 44.6M 1.7M 3.81
S7: [ID→[␣ ID 61.1M 1.1M 1.83
S10:) :→) ␣ : 76M 1.4M 1.84
S13:))→) ␣) 59M 2.4M 4.07
S14: ()→(␣) 78.1M 71.7K 0.09
S15: . ID→. ␣ ID 107M 40.6M 37.94
S16: (ID→(␣ ID 105M 2.9M 2.76

quency is small (meaning right-hand side is rare in
the corpus), LLMs will likely perform worse after
applying the rewrite rule. We measure the word
frequencies on GitHub, a primary source of code
data in LLMs’ pretraining corpora.1

Table 7 shows the word frequencies of the
rewrite rules, and the ratio (in percentages) of the
right-hand side to the left-hand side word frequency.
The ratio is always less than 100%, which explains
why LLMs exhibit non-negligible sensitivity to all
rewrite rules. Some rewrite rules with low ratio,
e.g., S14, also exhibit high sensitivity in Figure 3b.

5.2 Hidden State Analysis

LLMs’ hidden states represent their internal com-
prehension and reasoning processes, which may
help explain their sensitive to tokenization changes.
We compare the hidden states before and after ap-
plying the rewrite rules. For each tokens sequence
changed, we extract the hidden states of the last
token in the sequence, which summarizes the in-
formation of the entire sequence. We focus this
analysis on the best-performing LLM, Qwen-32B.

We first measure the cosine similarity between
the hidden states before and after applying the
rewrite rules. Figure 4 shows correlation between
the layer from which the hidden states are extracted
and the similarity. For both naming and spacing
rewrite rules, the similarity starts from almost 0 in
the first (input) layer, increases (and stabilizes in

1We use GitHub’s search feature to measure word frequen-
cies; due to the limitation in regular expressions and characters
that can be used in the search string, we can only conduct this
analysis on a subset of the spacing rewrite rules.

(a) naming rewrite rules

(b) spacing rewrite rules

Figure 4: The similarity of each layer’s hidden states
before and after applying rewrite rules.

most cases) in middle layers, and drops again at
the last (output) layer. This observation is consis-
tent with the information bottleneck theory (Saxe
et al., 2019), which states that the middle layers
capture the compressed semantic information. In-
terestingly, in Figure 4b, we observe that for some
spacing rewrite rules (S14 and S3), the similarity in
middle layers is also low, implying that the model
sees the before and after versions as semantically
different. These rewrite rules match the ones that
LLMs are most sensitive to in Figure 3b.

Then, we compute the hidden state diffs as the
hidden states after applying rewrite rules minus
those before applying, on the medium layer of the
model which should best capture semantic infor-
mation. Figure 5 shows the visualizations of the
hidden state diffs using t-SNE (Maaten and Hinton,
2008). We observe that the diffs of naming and
spacing rewrite rules are clearly distinguishable
(Figure 5a), so are the diffs of naming (Figure 5b)
and spacing rewrite rules (Figure 5c, note that S17
and S18 are excluded since they are supersets of
other rewrite rules). This confirms that the hidden
states, especially from the middle layers, are good
representations of semantic information and may
be utilized to mitigate the tokenization changes.

7

(a) naming vs. spacing
(b) naming rewrite rules (c) spacing rewrite rules

Figure 5: Visualizations of the hidden state diffs using t-SNE (Maaten and Hinton, 2008).

6 Related Work

Tokenization Most modern LLMs use subword
tokenizers such as BPE (Sennrich et al., 2016),
which create vocabularies based on how often char-
acter sequences occur together. The resulting to-
ken types do not always correspond to meaningful
words or code elements, and can vary depending
on how the tokenizer was trained. For example,
Liu et al. (2025) shows that allowing token merges
across whitespace boundaries produces more mean-
ingful units, compared to tokenizers that always
split at spaces. Chirkova and Troshin (2023) intro-
duces a tokenizer designed to better align with PL
syntax, achieving lower token counts while preserv-
ing model performance. These studies show that
tokenization can influence how well a model un-
derstands and generates code, and our work builds
on this line of inquiry by quantifying the effects of
semantic-preserving tokenization changes.

Robustness to Representation Variations An-
other important question is how robust LLMs are
to variations in tokenization and representation
at inference time. Zheng et al. (2025) show that
instruction-tuned models can often retain high per-
formance even when inputs are tokenized in un-
conventional or character-level formats, suggest-
ing that such models may learn generalizable in-
ternal representations. However, their study also
shows a measurable performance drop compared to
standard tokenizations, and other work highlights
further limitations. Wang et al. (2025) find that
adversarial changes to token boundaries can sig-
nificantly degrade model predictions, especially in
models that have not undergone instruction tun-
ing. In structured domains like chemistry, Yan
et al. (2025) demonstrate that LLMs produce in-
consistent outputs across semantically equivalent
molecular representations. These findings suggest
that LLMs remain sensitive to surface-level varia-

tions. Our work contributes to this line by focusing
specifically on PLs.

Syntax-Aware Code Modeling To address the
mismatch between subword tokenization and PL
grammar, several approaches incorporate gram-
mar constraints into the LLM decoding pro-
cess. Synchromesh (Poesia et al., 2022) and PI-
CARD (Scholak et al., 2021) enforce syntactic va-
lidity at generation time by using runtime pars-
ing to filter out invalid token continuations. Syn-
Code (Ugare et al., 2024) improves the efficiency of
such methods by constructing a DFA-based mask
that precomputes token legality while explicitly
handling partial tokens. Boundless BPE (Schmidt
et al., 2025) removes fixed pretokenizers and en-
ables dynamic boundary selection, allowing the
model to learn tokens that correspond to syntactic
or semantic units. Together, these efforts aim to
align LLM outputs more closely with formal code
structure, a disconnect that our work quantifies by
measuring how semantics-preserving tokenization
variations affect model behavior.

7 Conclusions

This work studies the tokenization misalignment
between subword-based LLMs and PL grammar.
While subword tokenizers like BPE are widely used
in code LLMs, they segment inputs based on fre-
quency statistics, not grammar, leading to token
boundaries that may not align with syntactic units
in code. Through a suite of semantic-preserving
rewrite rules, our framework TOKDRIFT shows
that even minor formatting changes, such as whites-
pace edits or identifier renamings, can cause sub-
stantial shifts in model outputs. These effects hold
across nine coding LLMs and three tasks (fixing,
summarization, and translation). These findings
motivate future research for grammar-aware or
domain-adaptive tokenizers that more faithfully re-
flect PL structure.

8

Limitations

While our study shows limitations of current tok-
enizer designs in code LLMs, our analysis focuses
on a targeted set of semantic-preserving rewrites
based on common formatting and naming conven-
tions; these do not encompass all potential sources
of tokenization drift. Second, although we evaluate
nine widely used code LLMs, our findings may not
generalize to models with fundamentally different
architectures (e.g., state space models (Gu et al.,
2022)) or tokenization strategies (e.g., character-
level or grammar-driven tokenizers (Kim et al.,
2016)). Third, our work centers on measurement
and diagnosis, and we do not explore mitigation
strategies. Future work could investigate tokenizer
retraining, ensemble decoding over multiple to-
kenizations, or architectural modifications to im-
prove the alignment between token boundaries and
programming language syntax.

Acknowledgments

We thank Yu Liu for valuable comments and feed-
back. This work was supported in part by Compute
Ontario (computeontario.ca) and the Digital Re-
search Alliance of Canada (alliancecan.ca). It was
also partially supported by a Natural Sciences and
Engineering Research Council of Canada (NSERC)
Discovery Grant (RGPIN-2024-04909) and a start-
up grant from the University of Waterloo. Yuntian
Deng is additionally supported by an NSERC Dis-
covery Grant (RGPIN-2024-05178) and a start-up
grant from the University of Waterloo.

References
Wasi Ahmad, Md Golam Rahman Tushar, Saikat

Chakraborty, and Kai-Wei Chang. 2023. AVATAR: A
parallel corpus for Java-Python program translation.
In Findings of the Association for Computational
Linguistics: ACL, pages 2268–2281.

Spurthi Amba Hombaiah, Tao Chen, Mingyang Zhang,
Michael Bendersky, and Marc Najork. 2021. Dy-
namic language models for continuously evolving
content. In International Conference on Knowledge
Discovery and Data Mining, pages 2514–2524.

Loubna Ben Allal, Niklas Muennighoff, Lo-
gesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A framework
for the evaluation of code generation mod-
els. https://github.com/bigcode-project/
bigcode-evaluation-harness.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,

Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Nadezhda Chirkova and Sergey Troshin. 2023.
Codebpe: Investigating subtokenization options for
large language model pretraining on source code.
Preprint, arXiv:2308.00683.

William Jay Conover. 1999. Practical nonparametric
statistics. john wiley & sons.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Albert Gu, Karan Goel, and Christopher Ré. 2022. Effi-
ciently modeling long sequences with structured state
spaces. In The International Conference on Learning
Representations (ICLR).

Batu Guan, Xiao Wu, Yuanyuan Yuan, and Shaohua Li.
2025. Is your benchmark (still) useful? dynamic
benchmarking for code language models. arXiv
preprint arXiv:2503.06643.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In International
Conference on Program Comprehension, pages 200–
210.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander
Rush. 2016. Character-aware neural language mod-
els. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1).

Alisa Liu, Jonathan Hayase, Valentin Hofmann, Se-
woong Oh, Noah A. Smith, and Yejin Choi. 2025. Su-
perbpe: Space travel for language models. Preprint,
arXiv:2503.13423.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(Nov):2579–2605.

Meta FAIR CodeGen Team. 2025. Cwm: An open-
weights llm for research on code generation with
world models. Technical report, Meta. 32B-
parameter open-weights model; inference code and
weights released.

9

https://aclanthology.org/2023.findings-acl.143/
https://aclanthology.org/2023.findings-acl.143/
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.00683
https://arxiv.org/abs/2308.00683
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.1609/aaai.v30i1.10362
https://doi.org/10.1609/aaai.v30i1.10362
https://arxiv.org/abs/2503.13423
https://arxiv.org/abs/2503.13423
https://scontent-ord5-1.xx.fbcdn.net/v/t39.2365-6/557661924_1786317938658057_6511429830363523883_n.pdf?_nc_cat=101&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=tBNFCMFjBkAQ7kNvwGN16dy&_nc_oc=AdkxrYpzvtfyRwdiw6wUhcMRY8Pok6vW6NrdsB1nPtYaVei59fexJ84_FqTiKrnQK_FQuoralQSoYZR1X5_9UgTe&_nc_zt=14&_nc_ht=scontent-ord5-1.xx&_nc_gid=3gJlHPLqMaOuhdAMKAenww&oh=00_Afd3KCbcOOrSSlR44ge6Imz0HrtPUFp-w8ejTHI4wDiWtw&oe=68EA5C29
https://scontent-ord5-1.xx.fbcdn.net/v/t39.2365-6/557661924_1786317938658057_6511429830363523883_n.pdf?_nc_cat=101&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=tBNFCMFjBkAQ7kNvwGN16dy&_nc_oc=AdkxrYpzvtfyRwdiw6wUhcMRY8Pok6vW6NrdsB1nPtYaVei59fexJ84_FqTiKrnQK_FQuoralQSoYZR1X5_9UgTe&_nc_zt=14&_nc_ht=scontent-ord5-1.xx&_nc_gid=3gJlHPLqMaOuhdAMKAenww&oh=00_Afd3KCbcOOrSSlR44ge6Imz0HrtPUFp-w8ejTHI4wDiWtw&oe=68EA5C29
https://scontent-ord5-1.xx.fbcdn.net/v/t39.2365-6/557661924_1786317938658057_6511429830363523883_n.pdf?_nc_cat=101&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=tBNFCMFjBkAQ7kNvwGN16dy&_nc_oc=AdkxrYpzvtfyRwdiw6wUhcMRY8Pok6vW6NrdsB1nPtYaVei59fexJ84_FqTiKrnQK_FQuoralQSoYZR1X5_9UgTe&_nc_zt=14&_nc_ht=scontent-ord5-1.xx&_nc_gid=3gJlHPLqMaOuhdAMKAenww&oh=00_Afd3KCbcOOrSSlR44ge6Imz0HrtPUFp-w8ejTHI4wDiWtw&oe=68EA5C29

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. OctoPack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. Preprint,
arXiv:2112.00114.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna,
Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in transla-
tion: A study of bugs introduced by large language
models while translating code. In Proceedings of the
IEEE/ACM 46th International Conference on Soft-
ware Engineering, pages 1–13.

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric,
Junyi Jessy Li, and Raymond Mooney. 2020. Learn-
ing to update natural language comments based on
code changes. In Annual Meeting of the Association
for Computational Linguistics, pages 1853–1868.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code gen-
eration from pre-trained language models. Preprint,
arXiv:2201.11227.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam
Ramji, Ulrich Finkler, Susan Malaika, and Frederick
Reiss. 2021. CodeNet: A large-scale AI for code
dataset for learning a diversity of coding tasks. In
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu
Advani, Artemy Kolchinsky, Brendan D Tracey, and
David D Cox. 2019. On the information bottleneck
theory of deep learning. Journal of Statistical Me-
chanics: Theory and Experiment, 2019(12):124020.

Craig W. Schmidt, Varshini Reddy, Chris Tanner, and
Yuval Pinter. 2025. Boundless byte pair encod-
ing: Breaking the pre-tokenization barrier. Preprint,
arXiv:2504.00178.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In International Conference
on Acoustics, Speech and Signal Processing, pages
5149–5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Annual Meeting of the Association
for Computational Linguistics, pages 1715–1725.

Michele Tufano, Jevgenija Pantiuchina, Cody Watson,
Gabriele Bavota, and Denys Poshyvanyk. 2019. On
learning meaningful code changes via neural machine
translation. In International Conference on Software
Engineering, pages 25–36.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Mi-
sailovic, and Gagandeep Singh. 2024. Syncode: Llm
generation with grammar augmentation. Preprint,
arXiv:2403.01632.

Dixuan Wang, Yanda Li, Junyuan Jiang, Zepeng Ding,
Ziqin Luo, Guochao Jiang, Jiaqing Liang, and De-
qing Yang. 2025. Tokenization matters! degrading
large language models through challenging their tok-
enization. Preprint, arXiv:2405.17067.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Bing Yan, Angelica Chen, and Kyunghyun Cho. 2025.
Inconsistency of llms in molecular representations.
Digital Discovery.

John Yang, Carlos E Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik R Narasimhan, and
Ofir Press. 2024. SWE-agent: Agent-computer inter-
faces enable automated software engineering. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Brian Siyuan Zheng, Alisa Liu, Orevaoghene Ahia,
Jonathan Hayase, Yejin Choi, and Noah A. Smith.
2025. Broken tokens? your language model can se-
cretly handle non-canonical tokenizations. Preprint,
arXiv:2506.19004.

10

https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2201.11227
https://arxiv.org/abs/2201.11227
https://openreview.net/forum?id=6vZVBkCDrHT
https://openreview.net/forum?id=6vZVBkCDrHT
https://arxiv.org/abs/2504.00178
https://arxiv.org/abs/2504.00178
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://aclanthology.org/P16-1162/
https://aclanthology.org/P16-1162/
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2405.17067
https://arxiv.org/abs/2405.17067
https://arxiv.org/abs/2405.17067
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1039/D5DD00176E
https://openreview.net/forum?id=mXpq6ut8J3
https://openreview.net/forum?id=mXpq6ut8J3
https://arxiv.org/abs/2506.19004
https://arxiv.org/abs/2506.19004

A Use of LLMs

We used an LLM-based writing assistant to polish
grammar. All ideas, analyses, experiments, and
scientific claims are our own, and we take full re-
sponsibility for the content of this work.

B Additional Background: Tokenizer
Differences Between LLMs

Figure 6 shows the heatmap of vocabulary dis-
tances between tokenizers, which includes 19 popu-
lar open-source (coding) LLMs from 8 model fami-
lies. Notably, most LLMs adopt a pre-tokenization
strategy that splits text into linguistically and
layout-meaningful chunks before a byte-level BPE.
While details vary by family, common choices in-
clude isolating short digit runs (often 1–3; Qwen
and some DeepSeek variants prefer per-digit),
treating contiguous letters with combining marks
as words, splitting punctuation and symbol runs
(sometimes with an optional leading space), and
separating newline blocks and longer space runs.
Non-Latin scripts such as Han/Hiragana/Katakana
(and in some cases Hangul) are taken as contiguous
spans. Family differences that matter for our study
include LLaMA-3 explicitly detaching English cl-
itics, CodeQwen-1.5 disabling pre-tokenization
(leaving underscores and long ASCII spans intact),
DeepSeek-Coder using code-oriented splits (letters,
punctuation, newlines, CJK, digits), and DeepSeek-
V3/LLaMA-4/GPT-OSS converging on a similar
unified scheme. In practice, more aggressive pre-
segmentation tends to make models tolerant to su-
perficial spacing around symbols but sensitive to
numeric chunk boundaries, whereas byte-only or
lightly pre-segmented designs make underscore
and identifier edits more likely to introduce new
token boundaries.

C Additional Experimental Methodology

C.1 Benchmarks Normalization

To ensure that our semantic-preserving naming/s-
pacing rewrite rules (Section 3.3) do not spuriously
break compilation or tests, we perform a light-
weight normalization pass before evaluation.

For the bug fixing and code summarization
tasks from HumanEvalPack (Muennighoff et al.,
2023), we first canonicalize Java identifier style
to camelCase from snake_case2, then propagate

2HumanEvalPack (Muennighoff et al., 2023) translates
the HumanEval (Chen et al., 2021) benchmark from Python

any renamings consistently to tests, entry points,
and declarations to preserve their functionalities.

For the code translation tasks, we start from
the Avatar and CodeNet benchmarks prepared
by Pan et al. (2024), following their task defi-
nitions and tests. We fixed some samples with
harness-compatibility issues that would otherwise
cause false negatives and prune a small number
of unsalvageable or pathological samples (e.g., ex-
tremely long inputs or cases that time out), without
changing the underlying problem semantics. And
finally, we dropped 6 python2java tasks and 4
java2python tasks in Avatar that we could not fix.

The most common adjustments fall into a few
categories: (i) IO/formatting normalization. For
example, we replace non-portable characters such
as U+FFFD or segmentation markers like U+2581
with ASCII equivalents; ensure consistent tokeniza-
tion by splitting on spaces instead of empty strings;
remove trailing spaces/newlines; standardize nu-
meric output with Java DecimalFormat or Python
f-strings to fixed precision; (ii) test correctness fixes
where expected outputs were inconsistent with the
reference implementation or ordering; and (iii) min-
imal code-context edits that preserve semantics but
align with tests (e.g., renaming helper methods
where tokenizer-specific splits would otherwise oc-
cur, adding @Override annotations, or make Scan-
ner/FastScanner usage consistent). All edits are
specified once, applied uniformly to baseline and
variant inputs, and never conditioned on model out-
puts.

C.2 Rewrite Algorithms
To mutatively rewrite a code context on naming,
we first parse it to obtain a code token index
and two identifier sets: (i) immutable identifiers
derived from configured immutable types (e.g.,
Java: importDeclaration, methodCall; Python:
import_as_name, trailer); (ii) declaration iden-
tifiers that are safe to rename (excluding Java meth-
ods annotated with @Override). We restrict can-
didates by casing using regexes, specifically, snake
case matches [a-z0-9]+(?:_[A-Za-z0-9]+)+
and camel case identifier matches the regex
[a-z]+(?:[A-Z]+[A-Za-z0-9]+[A-Za-z0-9]*)+.
For each eligible identifier, we segment its lexeme
by a well designed regex, convert from the source
to the target case, and record the absolute character
positions in the original string where underscores

to other PLs (including Java), but all the identifiers were re-
mained in snake_case regardless of the target PL.

11

Figure 6: Heatmap of vocabulary distances between tokenizers (Full ver.).

would be inserted or removed (edit events). For Hu-
manEval tasks, we additionally propagate the same
renamings to tests, entry points, and declarations to
keep the harness consistent, and these are treated
as optional ancillary patches and do not alter
the core algorithm. The immutable/declaration
settings aim to maximize safe coverage while
preserving compilation and test pass behavior.

Spacing rewrite follows the same structure but,
instead of changing identifier lexemes, we insert
exactly one space between adjacent tokens when
their kinds match a configured token-type bigram
(former, latter) from Table 3. For each match, we
insert whitespace at the boundary between the two
tokens, record an insertion event at that position,
and update offsets.

Conceptually, although rewrites are defined over
PL tokens, the notion of a fragment uses LLM
tokens. For each rewrite site, we consider the min-
imal contiguous list of LLM tokens that covers

the affected PL tokens (identifiers for naming and
the two code tokens of each combination for spac-
ing) as the fragment. Our fragment-change clas-
sification is based on an analysis of all fragments’
transformation in a code context. Specifically, a
merge occurs when at least one old LLM token
boundary inside those spans disappears, and a split
occurs when at least one new boundary appears af-
ter rewriting. To detect and analyze all LLM token
boundary transformations, we compute LLM token
start positions before and after rewriting with the
same LLM tokenizer. We ignore boundaries cre-
ated exactly at an edit site between two code tokens
or those created right next to the edit site within
one code token. Meaning that for insertions, we
disregard any boundary introduced by the inserted
whitespace between two code tokens that were fully
or partially combined into one LLM token, as well
as those caused by standalone underscores immedi-
ately to its right (a behavior commonly observed in

12

the DeepSeek-Coder or CodeQwen-1.5 tokenizer,
where underscores are usually treated as a single
token), as encoded by the various edit masks clas-
sified by edit types in Algorithm 3. The loop in
Algorithm 3 shifts the original boundary set by the
cumulative δ pre edit to align coordinate systems,
builds the masks for shift edits and edit-adjacent
positions for insert operation, and then compares
adjusted old versus filtered new starts. Specifically,
let Sold and Snew be the sets of LLM token starts
before and after rewriting, and after masking spe-
cific edit sites, we compute A=Sold \ Snew (old
boundaries lost) and B=Snew \ Sold (new bound-
aries gained). The label is unchanged if A=∅ and
B=∅, merged if A̸=∅ and B=∅, split if A=∅
and B ̸=∅, and mixed otherwise.

C.3 Metrics Computation Algorithm

We evaluate on two input programming language
subsets for accuracy and ∆accuracy, Xp (Python
inputs) and Xj (Java inputs), where their union
X =Xj ∪Xp with |X|=1546. For a fixed rewrite
rule wi and model m, let Ti be the deterministic
transformation that applies wi to an input x ∈ X ,
and we define T0 as no rule would be applied on
the input. And we let W={i|i = 0, 1, · · · , 24}
denote the assignment set for all rules where i=0
is the baseline, i>0 means the variant of applying
rule wi. Running the model yields code fm(Ti(x)),
which the harness evaluates on the test set T (x).
We define the test-level pass fraction

rm,i(x) ≜
1

|T (x)|
∑

t∈T (x)

[[fm(Ti(x))]]t,

where [[fm(Ti(x))]]t ∈ {0, 1} denotes the execu-
tion result of program fm(Ti(x)) from test t (Guan
et al., 2025). Follow that we define the task-level
correctness indicator Ym,i(x) ≜ I{rm,i(x) = 1} ∈
{0, 1}. So the accuracy of a rule assignment i ∈W
on a set S ∈ {Xp, Xj} is

Accuracyi(m;S) =
1

|S|
∑
x∈S

Ym,i(x).

We report ∆accuracy as ∆accuracyi(m;S) ≜
Accuracyi(m;S) − Accuracy0(m;S), where i ∈
W and i ̸= 0. Not all inputs would be mod-
ified by a given rule, we therefore define the
actually-affected subset

X ′
i ≜ {x ∈ X : Ti(x) ̸= x },

whose summed sizes for all rules classified by
model series are shown in Table 8. Then our pro-
posed sensitivity measures how often correctness
flips among affected inputs only by

Sensitivityi(m) ≜
1

|X ′
i|

∑
x∈X′

i

∣∣Ym,i(x)−Ym,0(x)
∣∣.

Intuitively, ∆accuracy captures net gains/losses
which may cancel when aggregating, whereas sen-
sitivity isolates the flip rate on inputs whose tokens
were actually changed by wi.

C.4 Experimental Environment

We conduct all experiments on an NVIDIA H100
GPU cluster, consuming approximately 1840 GPU-
hours in total across runs. All model check-
points are obtained from the Hugging Face Hub
and loaded with the Hugging Face Transform-
ers library (v4.53.2) (Wolf et al., 2020). Unless
otherwise stated, models are executed in fp32,
the only exceptions are Llama-3.3-70B-Instruct,
Qwen2.5-Coder-32B-Instruct, and deepseek-coder-
33b-instruct, which we run in fp16. All evalua-
tions use the bigcode-evaluation-harness frame-
work (Ben Allal et al., 2022) with its standard
protocols. We use deterministic decoding without
sampling and a batch size of 1 throughout. All
tests are executed with Java 21.0.1 and Python
3.8. The maximum generation length is set
to 1,024 tokens for HumanEvalPack and Avatar
tasks, and 2,048 tokens for CodeNet tasks. For
t-SNE visualizations, we use scikit-learn v1.7.1
(sklearn.manifold.TSNE) with perplexity to 70
and use the Barnes–Hut method with 1000 itera-
tions, PCA initialization, learning_rate=’auto’, and
n_jobs=16 (Pedregosa et al., 2011).

D Additional Results and Analysis

In Figures 7 and 8, the line plots summarize sen-
sitivity for each rewrite rule. In Figure 9, com-
paring samples with and without identifier frag-
ment change shows the overall trend of sensitiv-
ity on different model size. The per-series break-
downs in Figures 10 to 12 echo this pattern across
Llama-3, Qwen2.5-Coder, and DeepSeek-Coder,
while Llama tends to be more sensitive overall, all
families exhibit a variation in sensitivity between
"changed" and "unchanged" groups.
Figure 13 shows the distribution of ∆accuracy per
rewrite rule. Compared to sensitivity, ∆accuracy

13

Algorithm 1 Naming Rewrite

Input: C: code context, P : code parser, Itypes: immutable identifier types, ρsrc: source case regex, tgt:
target case, (optional) ExtraPatches: extra patches.

Output: C ′, E, (optional) ExtraPatches′.
// TokIdx: list of (x, τ, [i, j)) where x=code token, τ=token kind, [i, j)=char span

1: (TokIdx, Sim, Sdec)← INDEX(C,P, Itypes)
2: E ← [], R← ∅, C ′ ← C, O ← 0 // E: list of edit underscore events (pos, δ); O: total offset
3:

4: for (x, τ, [i, j)) ∈ TokIdx in ascending i do
5: if τ = id ∧ (x /∈ Sim ∨ x ∈ Sdec) ∧ REGEXCHECK(x, ρsrc) then
6: y ← CASECONV(x, tgt) // rewrite the identifier to the target case
7: ∆list ← DIFFUNDERLINEPOS(x, y, i) // return a list of add/del underscore events (pos, δ)
8: E ← APPEND

(
E, ∆list)

9: R[x]← y
10: C ′ ← CONCAT(C ′[0:(i+O)], y, C ′[(i+O+|x|):|C ′|]) // string concatenation
11: O ← O + (|y| − |x|)
12:

13: ExtraPatches′ ← APPLYREWRITES(ExtraPatches,R)
14: return (C ′, E, ExtraPatches′)

may not be ideal for quantifying robustness be-
cause gains and losses cancel and many samples
are unaffected.
Table 8 reports, for each rewrite rule, the number of
benchmark samples actually modified, stratified by
model series. Table 9 provides the full breakdown
of sensitivity by fragment-change category. To-
gether, these tables clarify both the scope of input
perturbations and the source of robustness differ-
ences observed in the main results.

14

Algorithm 2 Spacing Rewrite

Input: C: code context, P : code parser, (Kf ,Kℓ): token-type bigram.
Output: C ′, E.

// TokIdx: list of (x, τ, [i, j)) where x=code token, τ=token kind, [i, j)=char span
1: TokIdx← INDEX(C,P)
2: E ← [], C ′ ← C, O ← 0 // E: list of insert events (pos,+1); O: total offset
3:

4: for k ← 0 to |TokIdx| − 2 do
5: (xf , τf , [if , jf))← TokIdx[k]; (xℓ, τℓ, [iℓ, jℓ))← TokIdx[k+1]
6: if MATCH(τf ,Kf) ∧ MATCH(τℓ,Kℓ) then
7: E ← APPEND(E, (iℓ,+1))
8: C ′ ← CONCAT

(
C ′[0:(jf+O)], " ", C ′[(iℓ+O):|C ′|]

)
// insert one space

9: O ← O + 1
10:

11: return (C ′, E)

Table 8: Samples that been modified by rewrite rule, broken down by model series.

Rewrite Rule Model Series Total Unchanged Changed
All Merged Split Mixed

Naming

Llama-3 2238 1292 946 105 767 74
Qwen2.5-Coder 2238 1292 946 105 767 74
deepseek-coder 2247 999 1248 123 996 129
CodeQwen1.5 2247 954 1293 136 1043 114

Spacing

Llama-3 12804 9315 3489 660 2394 435
Qwen2.5-Coder 12804 9315 3489 660 2391 438
deepseek-coder 12804 8381 4423 608 3091 724
CodeQwen1.5 12804 8720 4084 725 2504 855

Figure 7: Percentage difference for naming rewrite transformations.

15

Algorithm 3 Fragment-Change Classification (CLASSIFY)

Input: C: original code context, C ′: new code context, E: list of edit events (pos, δ) with δ ∈ {±1},
EditType: edit type, T : LLM tokenizer.

Output: type ∈ {unchanged, merged, split, mixed}
1: Lold ← POSLLMTOKENS(C, T) // cumulative first character positions of LLM tokens in C
2: Lnew ← POSLLMTOKENS(C ′, T)
3: Sold ← SET(Lold), Snew ← SET(Lnew), Sed ← { pos | (pos, δ) ∈ E }, S+

ed ← ∅
4: O ← 0 // cumulative offset from prior edits
5:

6: for each (pos, δ) in E do
7: a← pos+O // adjusted position of this edit
8: Sold ← { p+δ if p > a else p | p ∈ Sold }
9: Sed ← { e+δ if e > a else e | e ∈ Sed }

10: S+
ed ← S+

ed ∪ {a+max(δ, 0)}
11: O ← O + δ
12: if EditType = underscore then
13: Snew ← Snew \ (S+

ed \Sed) // ignore starts next-to inserted standalone underscore edit boundaries
14: else if EditType = whitespace then
15: Snew ← Snew \ (Sed \ Sold) // ignore new starts created at whitespace edit boundaries
16:

17: A← Sold \ Snew // A: lost tokens after rewrite (some tokens merged)
18: B ← Snew \ Sold // B: gained tokens after rewrite (some tokens split)
19:

20: if A ̸= ∅ and B = ∅ then
21: return merged
22: else if A = ∅ and B ̸= ∅ then
23: return split
24: else if A ̸= ∅ and B ̸= ∅ then
25: return mixed
26: else
27: return unchanged

Figure 8: Percentage difference for spacing rewrite transformations.

16

Table 9: Impact of different types of fragment change on sensitivity (Full ver.).

Rewrite Rule Model Total Unchanged Changed (all) Changed (subcategories)
Merged Split Mixed

Naming

Llama-S 11.48 10.68 12.58 10.48 13.17 9.46
Llama-M 10.68 9.44 12.37 8.57 13.30 8.11
Llama-L 9.43 8.13 11.21 9.52 11.73 8.11
Qwen-S 7.73 6.97 8.77 8.57 9.00 6.76
Qwen-M 7.95 7.35 8.77 5.71 9.00 10.81
Qwen-L 8.27 6.58 10.57 11.43 10.82 6.76
DS-S 9.88 8.31 11.14 4.88 11.95 10.85
DS-M 8.95 7.91 9.78 7.32 10.54 6.20
DS-L 8.95 6.61 10.82 10.57 10.64 12.40

Spacing

Llama-S 10.22 9.32 12.61 11.06 13.37 10.80
Llama-M 10.99 9.69 14.45 13.03 14.83 14.48
Llama-L 8.51 7.24 11.89 10.00 11.53 16.78
Qwen-S 7.07 6.04 9.80 8.33 9.62 13.01
Qwen-M 8.87 7.53 12.47 12.42 10.71 22.15
Qwen-L 5.71 5.09 7.37 7.42 6.48 12.10
DS-S 8.36 7.25 10.47 8.72 10.45 12.02
DS-M 8.71 7.58 10.85 10.36 10.19 14.09
DS-L 6.26 5.80 7.12 6.41 6.44 10.64

17

Figure 9: Naming rewrite rules percentage difference
(with or without fragment change).

Figure 10: (Llama series) Spacing rewrite rules percent-
age difference (with or without fragment change).

Figure 11: (Qwen series) Spacing rewrite rules percent-
age difference (with or without fragment change).

Figure 12: (Deepseek series) Spacing rewrite rules per-
centage difference (with or without fragment change).

Figure 13: Distribution of ∆accuracy per rewrite rule
across models and benchmarks.

18

	Introduction
	Background
	LLM Tokenization
	PL Tokenization

	TokDrift Framework
	Benchmarks
	Models
	Rewrite Rules
	Metrics

	Evaluation
	Results
	Impact of Model Size
	Impact of Identifier Fragment Changes

	Root Cause Analyses
	Word Frequency Analysis
	Hidden State Analysis

	Related Work
	Conclusions
	Use of LLMs
	Additional Background: Tokenizer Differences Between LLMs
	Additional Experimental Methodology
	Benchmarks Normalization
	Rewrite Algorithms
	Metrics Computation Algorithm
	Experimental Environment

	Additional Results and Analysis

